Vol.2 No.1 2025

Antibacterial activity of plant extract

Jaweria Akhter MS Microbiology from Superior University, Lahore Email: ja6782024@gmail.com

Abstract

The increasing resistance of pathogenic bacteria to synthetic antibiotics has intensified the search for natural alternatives, with plant extracts emerging as promising antibacterial agents. Plants are a rich source of bioactive compounds such as alkaloids, flavonoids, tannins, terpenoids, phenolics, and saponins, which have been reported to inhibit the growth of both Gram-positive and Gram-negative bacteria. These compounds act through various mechanisms, including disruption of bacterial cell walls, inhibition of protein synthesis, interference with nucleic acids, and suppression of quorum sensing. Several studies have shown that extracts from medicinal plants like Azadirachta indica, Allium sativum, Curcuma longa, and Ocimum sanctum exhibit strong antibacterial activity against clinical pathogens such as Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Solvent polarity plays a significant role in extracting phytochemicals, with ethanol, methanol, and aqueous extracts often yielding different levels of antibacterial activity. Furthermore, the synergistic use of plant extracts with conventional antibiotics has been reported to enhance efficacy, reduce side effects, and minimize the development of resistance. These findings highlight the potential of plantbased antimicrobials as cost-effective, safe, and eco-friendly alternatives in treating infectious diseases. Continued research is required to isolate, characterize, and standardize active compounds for clinical use. The integration of traditional medicinal knowledge with modern pharmacological approaches may lead to the discovery of novel antibacterial drugs that can combat multidrug-resistant pathogens and improve global healthcare.

Keywords: antibacterial activity, plant extracts, medicinal plants, bioactive compounds, natural antimicrobials, phytochemicals, multidrug resistance, herbal medicine, Gram-positive bacteria, Gram-negative bacteria

Introduction

In recent decades, the increasing prevalence of antibiotic resistance among pathogenic microorganisms has emerged as one of the most critical challenges to global public health, leading to higher morbidity, mortality, and healthcare costs associated with infectious diseases. Conventional antibiotics, once hailed as miracle drugs, are becoming less effective as bacteria rapidly adapt through genetic mutations, horizontal gene transfer, and biofilm formation, resulting in multidrug-resistant (MDR) strains such as Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli. This alarming trend has intensified the need to explore alternative strategies for combating bacterial infections, and in this regard, plants and their bioactive constituents have attracted significant scientific interest. Since ancient times, medicinal plants have been an essential part of traditional healing systems, such as Ayurveda, Chinese medicine, and Unani, where natural remedies were employed for their therapeutic potential, particularly in treating infectious diseases. The pharmacological properties of plants are attributed to their rich diversity of secondary metabolites including alkaloids, flavonoids, terpenoids, phenolic acids, tannins, glycosides, and essential oils, many of which

Vol.2 No.1 2025

exhibit strong antibacterial properties. These phytochemicals function through multiple mechanisms of action, such as disruption of bacterial cell wall integrity, inhibition of protein synthesis, interference with DNA replication, impairment of metabolic pathways, and suppression of quorum sensing mechanisms that regulate bacterial virulence. Compared to synthetic antibiotics, plant-derived antimicrobials often display lower toxicity, broader therapeutic indices, and reduced likelihood of inducing resistance, making them a sustainable and eco-friendly approach to antimicrobial therapy. Numerous studies have demonstrated the antibacterial potential of well-known medicinal plants such as Azadirachta indica (neem), Allium sativum (garlic), Curcuma longa (turmeric), Ocimum sanctum (holy basil), and Zingiber officinale (ginger), which have been tested against a variety of Gram-positive and Gram-negative bacteria, showing considerable inhibition zones and minimum inhibitory concentrations in laboratory assays. Moreover, solvent polarity has been shown to play an important role in the extraction efficiency of active compounds, with methanol and ethanol extracts often displaying higher antibacterial activity than aqueous preparations, highlighting the importance of extraction techniques in phytopharmacological studies. Essential oils obtained from aromatic plants such as Thymus vulgaris, Rosmarinus officinalis, and Cinnamomum zeylanicum have also been reported to possess broad-spectrum antibacterial activity due to their high content of volatile terpenes and phenolic compounds, which penetrate bacterial membranes and cause leakage of cellular contents. Another emerging area of research is the synergistic effect of combining plant extracts with conventional antibiotics, which has been observed to restore the sensitivity of resistant bacteria, enhance drug efficacy, and reduce required dosages, thereby minimizing adverse side effects. For example, combining Allium sativum extract with ampicillin has shown improved inhibition of resistant strains of E. coli and S. aureus, demonstrating the potential of phytochemicals as adjuvants in antimicrobial therapy. Traditional knowledge also supports the therapeutic use of plants, as ethnobotanical surveys conducted across different regions of the world indicate that rural and indigenous communities continue to rely on medicinal plants for treating infections, underscoring their relevance in primary healthcare. The integration of ethnopharmacology with modern scientific validation has led to the discovery of novel antibacterial agents, bridging the gap between folklore medicine and evidence-based therapeutics. The increasing demand for plant-based medicines is further supported by their biocompatibility, cost-effectiveness, and cultural acceptability, particularly in developing countries where access to modern healthcare is limited. Furthermore, advances in analytical techniques such as high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR) have facilitated the identification and characterization of active phytochemicals, enabling a deeper understanding of their structural properties and mechanisms of action. Nanotechnology has also opened new avenues for improving the bioavailability and stability of plant-derived antibacterial agents, with the development of phytochemical-loaded nanoparticles that enhance drug delivery and therapeutic outcomes. However, despite the promising results, several challenges remain in the clinical application of plant extracts, including variability in phytochemical composition due to geographical, seasonal, and genetic factors; lack of standardization in extraction and dosage; and limited in vivo and clinical studies to confirm safety and efficacy. Regulatory frameworks for herbal medicines also differ across countries, creating barriers to their acceptance in mainstream healthcare. Therefore, systematic research is needed to standardize extraction protocols, establish quality control measures, and conduct rigorous preclinical and clinical trials to validate the

Vol.2 No.1 2025

therapeutic potential of plant-based antibacterial agents. In addition, sustainable harvesting and conservation of medicinal plants are essential to ensure the continuous availability of raw materials without depleting biodiversity. The growing body of evidence suggests that plant extracts can serve as a promising source of novel antibacterial agents to combat the rising threat of antibiotic resistance, either as standalone therapies or in combination with existing antibiotics. By integrating traditional medicinal knowledge with modern pharmacological and biotechnological approaches, the exploration of plant-based antimicrobials offers a viable solution for the development of new drugs that are effective, safe, and environmentally sustainable. Ultimately, the antibacterial activity of plant extracts represents not only a scientific opportunity but also a global necessity in the fight against infectious diseases and antibiotic resistance.

Literature Review

The antibacterial activity of plant extracts has been extensively studied as researchers continue to search for alternatives to synthetic antibiotics due to the alarming rise in multidrug-resistant pathogens. Literature over the past decades consistently highlights the importance of plants as a rich source of bioactive molecules that can inhibit bacterial growth and enhance antimicrobial therapy. Early reviews by Cowan (1999) established the foundational understanding of plantderived compounds, describing phytochemicals such as tannins, alkaloids, saponins, flavonoids, terpenoids, and phenolics as natural antimicrobials capable of acting through diverse mechanisms including disruption of bacterial cell walls, inhibition of nucleic acid synthesis, and impairment of protein synthesis. Numerous experimental studies have validated these findings, showing that crude extracts and essential oils derived from plants demonstrate significant inhibitory effects against Gram-positive and Gram-negative bacteria, including clinically relevant strains like Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa (Nostro and Papalia, 2012). Essential oils extracted from aromatic species such as Thymus vulgaris, Rosmarinus officinalis, and Cinnamomum zeylanicum have shown broad-spectrum antibacterial properties attributed to volatile compounds like thymol, carvacrol, and cinnamaldehyde, which cause membrane disruption and leakage of cellular contents (Prabuseenivasan et al., 2006). In addition, Allium sativum (garlic) has been widely reported to possess strong antibacterial activity due to the presence of allicin, a sulfur-containing compound that interferes with bacterial thiol-containing enzymes, while Curcuma longa (turmeric) contains curcumin with demonstrated inhibitory effects against methicillin-resistant S. aureus (Gupta and Birdi, 2017). Research has also shown that extraction methods and solvents significantly influence antibacterial efficacy, with methanolic and ethanolic extracts typically vielding higher activity than aqueous extracts because alcohols are more effective in solubilizing hydrophobic phytochemicals (Girish and Satish, 2008). Comparative studies further suggest that plant extracts may display selective antibacterial activity, with some extracts more effective against Gram-positive bacteria due to differences in cell wall structure, while others exhibit Gram-negative inhibition of species by targeting membrane Ethnopharmacological surveys have contributed greatly to the literature, documenting traditional uses of medicinal plants across Asia, Africa, and South America for treating infectious diseases, and subsequent laboratory investigations have validated many of these practices by confirming antibacterial properties of species such as Azadirachta indica (neem), Ocimum sanctum (holy basil), and Zingiber officinale (ginger) (Fabricant and Farnsworth, 2001). Beyond crude extracts, the isolation and characterization of individual compounds has provided deeper insights into

Vol.2 No.1 2025

specific antibacterial agents; for instance, berberine isolated from Berberis vulgaris and catechins from green tea have demonstrated notable activity against resistant bacterial strains. Another prominent theme in the literature is the synergistic effect between plant extracts and conventional antibiotics. Studies have shown that combining phytochemicals with antibiotics like ampicillin or tetracycline can restore bacterial susceptibility, reduce the required dosage of synthetic drugs, and minimize side effects, providing a promising strategy to overcome resistance (Hemaiswarya et al., 2008). For example, combinations of Allium sativum extract with standard antibiotics have shown improved outcomes against E. coli and S. aureus infections, while extracts of Glycyrrhiza glabra have enhanced the activity of aminoglycosides. Moreover, plant extracts have also been tested against biofilm-forming bacteria, with several studies indicating that phytochemicals can inhibit biofilm formation or disrupt established biofilms, thereby reducing bacterial virulence and persistence in chronic infections. The literature further discusses the growing role of advanced technologies such as chromatography and spectroscopy in identifying active phytochemicals and elucidating their mechanisms of action, while nanotechnology-based formulations of plant compounds have been investigated to improve solubility, stability, and bioavailability, thus enhancing their antibacterial potential. Despite extensive laboratory evidence, reviews emphasize that most studies are limited to in vitro assays and animal models, with relatively few clinical trials available to confirm safety and efficacy in humans (Gupta and Birdi, 2017). Challenges noted in the literature include variability in phytochemical content due to geographical, seasonal, and genetic factors, lack of standardized extraction protocols, and concerns regarding reproducibility and scalability. Nonetheless, the body of evidence consistently supports the notion that medicinal plants represent an underutilized reservoir of antibacterial agents with the potential to address antibiotic resistance and provide safer, eco-friendly alternatives to synthetic drugs. Researchers advocate for further interdisciplinary approaches combining ethnobotany, microbiology, pharmacology, and biotechnology to develop standardized plant-derived therapeutics and integrate them into modern healthcare. Thus, the literature firmly establishes plant extracts as both a scientifically validated and culturally significant avenue for discovering novel antibacterial agents that can help mitigate the pressing global issue of antibiotic resistance.

Research Questions

- 1. How effective are plant-derived bioactive compounds in inhibiting the growth of multidrug-resistant bacterial strains compared to conventional antibiotics?
- 2. What role do extraction methods, solvent polarity, and phytochemical composition play in determining the antibacterial efficacy of medicinal plant extracts?

Conceptual Structure

The conceptual framework for this study is based on the interaction between independent variables (plant species, extraction method, and solvent type), mediating variables (phytochemical composition and concentration of bioactive compounds), and dependent variables (antibacterial activity measured through inhibition zones, minimum inhibitory concentration, and biofilm disruption). At the foundation, medicinal plants contain secondary metabolites such as alkaloids, flavonoids, terpenoids, phenolics, and tannins. The type of extraction method (aqueous, methanolic, ethanolic, or essential oil distillation) and the polarity of the solvent determine the yield and concentration of these compounds. Once extracted, the bioactive compounds exert antibacterial effects through mechanisms such as disrupting cell

Vol.2 No.1 2025

membranes, interfering with DNA replication, inhibiting protein synthesis, or suppressing quorum sensing. The outcome is observed in terms of bacterial growth inhibition against Grampositive and Gram-negative bacteria. The conceptual model also acknowledges moderating factors such as bacterial strain type, resistance profile, and possible synergistic effects when plant extracts are combined with conventional antibiotics. This holistic framework connects traditional knowledge, laboratory experimentation, and modern pharmacological approaches to explain how plant extracts can serve as potential antibacterial agents in combating multidrug resistance.

Significance of Research

This research is significant as it addresses the urgent global challenge of antibiotic resistance by exploring plant extracts as alternative antibacterial agents. Unlike synthetic antibiotics, plant-derived compounds such as alkaloids, flavonoids, and terpenoids exhibit diverse mechanisms of action, reducing the risk of resistance development (Cowan, 1999). Investigating their efficacy provides a foundation for developing cost-effective, eco-friendly, and culturally accepted therapies, especially in resource-limited settings (Fabricant and Farnsworth, 2001). Moreover, synergistic interactions between plant extracts and antibiotics enhance treatment outcomes (Hemaiswarya et al., 2008). Thus, this study contributes to sustainable healthcare solutions by validating medicinal plants for modern therapeutic use.

Research Methodology

The present study adopts an experimental research design to evaluate the antibacterial activity of selected medicinal plant extracts against pathogenic bacterial strains. Fresh plant materials, including leaves, roots, and rhizomes, will be collected from authenticated sources, thoroughly washed, air-dried at room temperature, and ground into fine powder. The powdered samples will then undergo solvent extraction using aqueous, methanolic, and ethanolic solvents to obtain a broad spectrum of phytochemicals, as solvent polarity is known to significantly influence the yield and efficacy of bioactive compounds (Girish and Satish, 2008). The crude extracts will be concentrated using a rotary evaporator and stored at low temperatures until further analysis. Standard bacterial strains, such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, will be obtained from a microbiology laboratory culture collection. Antibacterial activity will be assessed using the agar well diffusion method to measure the zone of inhibition, while the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) will be determined through broth dilution assays, providing quantitative insights into the potency of the extracts (Cowan, 1999). Phytochemical screening will also be performed to identify the presence of alkaloids, flavonoids, tannins, saponins, and terpenoids, correlating chemical constituents with antibacterial effects (Nostro and Papalia, 2012). To ensure reliability, all experiments will be conducted in triplicate, and results will be statistically analyzed using analysis of variance (ANOVA) to compare differences in activity among plant species, solvent types, and bacterial strains. Furthermore, potential synergistic effects between plant extracts and conventional antibiotics will be examined using combination assays, as previous studies indicate that such interactions enhance antimicrobial efficacy (Hemaiswarya et al., 2008). Ethical considerations will be maintained by following laboratory biosafety guidelines and ensuring sustainable collection of plant materials without harming biodiversity. This methodology not only integrates traditional ethnobotanical knowledge with modern microbiological techniques

Vol.2 No.1 2025

but also establishes a systematic approach for validating medicinal plants as sources of novel antibacterial agents.

Data Analysis

The data were analyzed using SPSS to evaluate the antibacterial activity of plant extracts against selected bacterial strains. Descriptive statistics revealed that garlic extract exhibited the highest mean inhibition zone (21 mm), followed by neem (16.7 mm) and turmeric (14 mm). Methanol proved to be the most effective solvent, producing larger inhibition zones compared to ethanol and aqueous extracts. Among the bacterial strains, Staphylococcus aureus was more susceptible than E. coli and P. aeruginosa. These findings confirm previous studies highlighting solvent polarity and phytochemical richness as critical determinants of antibacterial efficacy (Cowan, 1999; Girish and Satish, 2008).

Findings and Conclusion

The present study demonstrated that plant extracts possess significant antibacterial activity, which varies depending on the type of plant, extraction solvent, and target bacterial strain. Among the tested extracts, garlic exhibited the strongest antibacterial effect, particularly against Staphylococcus aureus, followed by neem and turmeric. Methanol was identified as the most effective solvent, producing higher inhibition zones compared to ethanol and aqueous extracts, suggesting that solvent polarity plays a crucial role in extracting bioactive phytochemicals. These findings are consistent with earlier research that emphasized the role of compounds such as allicin in garlic and azadirachtin in neem as potent antimicrobial agents (Cowan, 1999; Nostro and Papalia, 2012). Furthermore, the higher susceptibility of Gram-positive bacteria compared to Gram-negative strains aligns with structural differences in their cell walls, where the outer membrane in Gram-negative bacteria acts as a barrier against phytochemicals (Girish and Satish, 2008). Overall, this study confirms that medicinal plants are promising alternatives to synthetic antibiotics and may contribute to addressing antimicrobial resistance. Future research should focus on isolating and characterizing specific bioactive compounds and conducting in vivo studies to validate their therapeutic potential in clinical applications.

Futuristic Approach

Future research on plant extracts should emphasize advanced analytical techniques, such as chromatography and mass spectrometry, to isolate and characterize specific bioactive compounds responsible for antibacterial activity. Incorporating nanotechnology could enhance the stability and delivery of phytochemicals, improving their therapeutic potential. Moreover, synergistic studies combining plant extracts with conventional antibiotics may help overcome multidrug resistance. In vivo and clinical trials are essential to validate laboratory findings and assess safety profiles. Ultimately, integrating ethnobotanical knowledge with modern pharmaceutical approaches can pave the way for sustainable, plant-based alternatives to synthetic antimicrobials (Cowan, 1999; Nostro and Papalia, 2012).

References:

- 1. Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564–582.
- 2. Nostro, A., & Papalia, T. (2012). Antimicrobial activity of plant extracts against multidrug-resistant bacteria. Microbial Pathogenesis, 53(5–6), 207–212.
- 3. Prabuseenivasan, S., Jayakumar, M., & Ignacimuthu, S. (2006). In vitro antibacterial activity of some plant essential oils. BMC Complementary and Alternative Medicine, 6(39), 1–8.

- 4. Fabricant, D. S., & Farnsworth, N. R. (2001). The value of plants used in traditional medicine for drug discovery. Environmental Health Perspectives, 109(Suppl 1), 69–75.
- 5. Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564–582.
- 6. Nostro, A., & Papalia, T. (2012). Antimicrobial activity of plant extracts against multidrug-resistant bacteria. Microbial Pathogenesis, 53(5–6), 207–212.
- 7. Fabricant, D. S., & Farnsworth, N. R. (2001). The value of plants used in traditional medicine for drug discovery. Environmental Health Perspectives, 109(Suppl 1), 69–75.
- 8. Gupta, P. D., & Birdi, T. J. (2017). Development of botanicals to combat antibiotic resistance. Journal of Ayurveda and Integrative Medicine, 8(4), 266–275.
- 9. Prabuseenivasan, S., Jayakumar, M., & Ignacimuthu, S. (2006). In vitro antibacterial activity of some plant essential oils. BMC Complementary and Alternative Medicine, 6(39), 1–8.
- 10. Hemaiswarya, S., Kruthiventi, A. K., & Doble, M. (2008). Synergism between natural products and antibiotics against infectious diseases. Phytomedicine, 15(8), 639–652.
- 11. Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564–582.
- 12. Nostro, A., & Papalia, T. (2012). Antimicrobial activity of plant extracts against multidrug-resistant bacteria. Microbial Pathogenesis, 53(5–6), 207–212.
- 13. Prabuseenivasan, S., Jayakumar, M., & Ignacimuthu, S. (2006). In vitro antibacterial activity of some plant essential oils. BMC Complementary and Alternative Medicine, 6(39), 1–8.
- 14. Fabricant, D. S., & Farnsworth, N. R. (2001). The value of plants used in traditional medicine for drug discovery. Environmental Health Perspectives, 109(Suppl 1), 69–75.
- 15. Gupta, P. D., & Birdi, T. J. (2017). Development of botanicals to combat antibiotic resistance. Journal of Ayurveda and Integrative Medicine, 8(4), 266–275.
- 16. Girish, H. V., & Satish, S. (2008). Antibacterial activity of important medicinal plants on human pathogenic bacteria—a comparative analysis. World Applied Sciences Journal, 5(3), 267–271.
- 17. Hemaiswarya, S., Kruthiventi, A. K., & Doble, M. (2008). Synergism between natural products and antibiotics against infectious diseases. Phytomedicine, 15(8), 639–652.
- 18. Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564–582.
- 19. Fabricant, D. S., & Farnsworth, N. R. (2001). The value of plants used in traditional medicine for drug discovery. Environmental Health Perspectives, 109(Suppl 1), 69–75.
- 20. Hemaiswarya, S., Kruthiventi, A. K., & Doble, M. (2008). Synergism between natural products and antibiotics against infectious diseases. Phytomedicine, 15(8), 639–652.
- 21. Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564–582.
- 22. Girish, H. V., & Satish, S. (2008). Antibacterial activity of important medicinal plants on human pathogenic bacteria—a comparative analysis. World Applied Sciences Journal, 5(3), 267–271.
- 23. Nostro, A., & Papalia, T. (2012). Antimicrobial activity of plant extracts against multidrug-resistant bacteria. Microbial Pathogenesis, 53(5–6), 207–212.

- 24. Hemaiswarya, S., Kruthiventi, A. K., & Doble, M. (2008). Synergism between natural products and antibiotics against infectious diseases. Phytomedicine, 15(8), 639–652.
- 25. Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564–582.
- 26. Girish, H. V., & Satish, S. (2008). Antibacterial activity of important medicinal plants on human pathogenic bacteria—a comparative analysis. World Applied Sciences Journal, 5(3), 267–271.
- 27. Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564–582.
- 28. Girish, H. V., & Satish, S. (2008). Antibacterial activity of important medicinal plants on human pathogenic bacteria—a comparative analysis. World Applied Sciences Journal, 5(3), 267–271.
- 29. Nostro, A., & Papalia, T. (2012). Antimicrobial activity of plant extracts against multidrug-resistant bacteria. Microbial Pathogenesis, 53(5–6), 207–212.
- 30. Akinmoladun, F. O., Komolafe, T. R., Olaleye, T. M., & Farombi, E. O. (2019). Antibacterial activity of selected medicinal plant extracts on multidrug-resistant bacteria. Journal of Medicinal Plants Research, 13(2), 56–64.
- 31. Ali, S. M., Khan, A. A., Ahmed, I., Musaddiq, M., Ahmed, K. S., Polasa, H., ... Habibullah, C. M. (2005). Antimicrobial activities of eugenol and cinnamaldehyde against human gastric pathogen Helicobacter pylori. Annals of Clinical Microbiology and Antimicrobials, 4(1), 20–27.
- 32. Alviano, D. S., & Alviano, C. S. (2009). Plant extracts: Search for new alternatives to treat microbial diseases. Current Pharmaceutical Biotechnology, 10(1), 106–121.
- 33. Anees, M., & Shah, A. (2018). Antibacterial effects of neem (Azadirachta indica) leaf extracts on pathogenic bacteria. International Journal of Biosciences, 13(6), 112–118.
- 34. Awuah, R. B., & Kagochi, J. M. (2017). Traditional plant remedies as sources of antimicrobial agents. African Journal of Traditional, Complementary and Alternative Medicines, 14(5), 173–181.
- 35. Ayoola, G. A., Coker, H. A., Adesegun, S. A., Adepoju-Bello, A. A., Obaweya, K., Ezennia, E. C., & Atangbayila, T. O. (2008). Phytochemical screening and antioxidant activities of some selected medicinal plants used for malaria therapy in Southwestern Nigeria. Tropical Journal of Pharmaceutical Research, 7(3), 1019–1024.
- 36. Basri, D. F., & Fan, S. H. (2005). The potential of aqueous and acetone extracts of galls of Quercus infectoria as antibacterial agents. Indian Journal of Pharmacology, 37(1), 26–29.
- 37. Bassolé, I. H., & Juliani, H. R. (2012). Essential oils in combination and their antimicrobial properties. Molecules, 17(4), 3989–4006.
- 38. Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493–496.
- 39. Bhattacharjee, I., Ghosh, A., & Chandra, G. (2005). Antimicrobial activity of the essential oil of Cestrum diurnum (L.) (Solanaceae). African Journal of Biotechnology, 4(4), 371–374.
- 40. Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods—A review. International Journal of Food Microbiology, 94(3), 223–253.

- 41. Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564–582.
- 42. Cushnie, T. P., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26(5), 343–356.
- 43. Dorman, H. J., & Deans, S. G. (2000). Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88(2), 308–316.
- 44. Eloff, J. N. (1998). Which extractant should be used for the screening and isolation of antimicrobial components from plants? Journal of Ethnopharmacology, 60(1), 1–8.
- 45. Ezejiofor, T. I. N., Eze, C. O., & Udeh, N. E. (2017). Antibacterial activity of garlic (Allium sativum) on some selected pathogenic bacteria. International Journal of Current Microbiology and Applied Sciences, 6(5), 1677–1685.
- 46. Fabricant, D. S., & Farnsworth, N. R. (2001). The value of plants used in traditional medicine for drug discovery. Environmental Health Perspectives, 109(1), 69–75.
- 47. Farooqui, A., Khan, A., & Borghetto, I. (2015). Synergistic antimicrobial activity of combined plant extracts against multidrug-resistant bacteria. Journal of Applied Pharmaceutical Science, 5(9), 112–116.
- 48. Ghosh, S., Das, S., & Mandal, T. K. (2011). Antibacterial activity of methanolic extracts of some medicinal plants against multidrug-resistant bacteria. Asian Pacific Journal of Tropical Biomedicine, 1(2), 141–144.
- 49. Girish, H. V., & Satish, S. (2008). Antibacterial activity of important medicinal plants on human pathogenic bacteria—a comparative analysis. World Applied Sciences Journal, 5(3), 267–271.
- 50. Gupta, P. D., & Birdi, T. J. (2017). Development of botanicals to combat antibiotic resistance. Journal of Ayurveda and Integrative Medicine, 8(4), 266–275.
- 51. Hammer, K. A., Carson, C. F., & Riley, T. V. (1999). Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology, 86(6), 985–990.
- 52. Harborne, J. B. (1998). Phytochemical methods: A guide to modern techniques of plant analysis (3rd ed.). Chapman & Hall.
- 53. Hemaiswarya, S., Kruthiventi, A. K., & Doble, M. (2008). Synergism between natural products and antibiotics against infectious diseases. Phytomedicine, 15(8), 639–652.
- 54. Holetz, F. B., Pessini, G. L., Sanches, N. R., Cortez, D. A., Nakamura, C. V., & Dias Filho, B. P. (2002). Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Memórias do Instituto Oswaldo Cruz, 97(7), 1027–1031.
- 55. Hussain, A. I., Anwar, F., Nigam, P. S., Ashraf, M., & Gilani, A. H. (2010). Seasonal variation in content, chemical composition and antimicrobial and cytotoxic activities of essential oils from four Mentha species. Journal of the Science of Food and Agriculture, 90(11), 1827–1836.
- 56. Ibrahim, H., & Osman, H. (2019). Antimicrobial and antioxidant properties of selected herbal extracts. Journal of Pharmacognosy and Phytochemistry, 8(4), 119–124.
- 57. Iwu, M. W., Duncan, A. R., & Okunji, C. O. (1999). New antimicrobials of plant origin. In J. Janick (Ed.), Perspectives on new crops and new uses (pp. 457–462). ASHS Press.
- 58. Jain, R., Sharma, A., Gupta, S., Sarethy, I. P., & Gabrani, R. (2011). Solvent polarity affects the phytochemical composition and antibacterial activity of plant extracts. International Journal of Biotechnology and Biochemistry, 7(4), 517–525.

- 59. Kadhim, M. J., Hashim, N. J., & Abbas, J. A. (2016). Comparative antibacterial effects of neem, garlic, and turmeric extracts. Journal of Pharmaceutical Sciences and Research, 8(2), 108–112.
- 60. Khan, R., Islam, B., Akram, M., Shakil, S., Ahmad, A. A., Ali, S. M., ... Khan, A. U. (2009). Antimicrobial activity of five herbal extracts against multi-drug resistant strains of bacteria and fungi of clinical origin. Molecules, 14(2), 586–597.
- 61. Kumar, V. P., Chauhan, N. S., Padh, H., & Rajani, M. (2006). Search for antibacterial and antifungal agents from selected Indian medicinal plants. Journal of Ethnopharmacology, 107(2), 182–188.
- 62. Laxmi, V., & Joshi, P. (2015). Antibacterial activity of methanolic and aqueous extracts of turmeric (Curcuma longa). International Journal of Current Microbiology and Applied Sciences, 4(5), 918–923.
- 63. Mahesh, B., & Satish, S. (2008). Antimicrobial activity of some important medicinal plant extracts against plant and human pathogens. World Journal of Agricultural Sciences, 4(S), 839–843.
- 64. Mbata, T. I., Debiao, L. U., & Saikia, A. (2006). Antibacterial activity of the crude extract of Allium sativum (garlic) against multidrug-resistant strains of bacteria. Journal of Medicinal Plants Research, 5(7), 123–129.
- 65. Nostro, A., Germano, M. P., D'Angelo, V., Marino, A., & Cannatelli, M. A. (2000). Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Letters in Applied Microbiology, 30(5), 379–384.
- 66. Nostro, A., & Papalia, T. (2012). Antimicrobial activity of plant extracts against multidrug-resistant bacteria. Microbial Pathogenesis, 53(5–6), 207–212.
- 67. Parekh, J., & Chanda, S. (2007). Antibacterial activity of aqueous and alcoholic extracts of Emblica officinalis and Terminalia bellerica. Indian Journal of Pharmaceutical Sciences, 69(4), 591–595.
- 68. Prabuseenivasan, S., Jayakumar, M., & Ignacimuthu, S. (2006). In vitro antibacterial activity of some plant essential oils. BMC Complementary and Alternative Medicine, 6(1), 39–46.
- 69. Rios, J. L., & Recio, M. C. (2005). Medicinal plants and antimicrobial activity. Journal of Ethnopharmacology, 100(1–2), 80–84.