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Abstract 

Population health segmentation creates cohorts of individuals with similar health needs to help 

develop targeted healthcare interventions. The U.S. healthcare system faces potential benefits 

and obstacles when using diverse datasets comprising electronic health records and social 

determinants for patient segmentation. Although complex machine learning models improve 

segmentation precision, they function as "black boxes" that obstruct clinical acceptance. XAI 

methods, especially SHAP (Shapley Additive exPlanations), solve the problem of model opacity 

by clarifying which features contribute to model decisions. We present a framework that 

combines Explainable AI methods with big data analytics to create transparent population 

segmentation. The proposed framework uses Apache Spark MLlib to segment patient 

populations with diabetes, cardiovascular disease, and chronic respiratory illnesses. Our research 

shows that SHAP-based explanations effectively reveal main factors (e.g., lab values, 

comorbidities, social factors) that drive population segments. SHAP-based explanations allow 

clinicians to understand critical drivers such as lab values, medical comorbidities, and social 

factors for each patient segment, improving clinical decision-making. Our case studies and 

realistic examples demonstrate how explainable segmentation leads to optimal resource 

allocation while allowing for personalized care plans and ethical supervision. bias detection) In 

large-scale health systems. This discussion presents the technical and clinical benefits of 

implementing XAI-driven segmentation within U.S. healthcare systems to enhance population 

health outcomes through transparency and trust-building. 

 

Keywords: Explainable Artificial Intelligence (XAI), Population Health Segmentation, Big Data 

Analytics, SHAP (SHapley Additive Explanations), Healthcare Risk Stratification. 

Introduction 

Population health segmentation uses analytic methods to create distinct homogeneous subgroups 

within a population by assessing their health needs along with their risks and patterns of care 

usage (Johns Hopkins ACG, 2021). Segmentation differs from basic risk stratification because it 

combines clinical, behavioral, and demographic factors to create groups that direct customized 

care and policy interventions. The segmentation process creates groups that vary from generally 

healthy individuals to patients with multiple chronic conditions who require extensive medical 

care, which facilitates the development of specific programs to meet the distinct needs of each 

group (Dambha-Miller et al., 2022). The United States benefits from segmentation due to its 

extensive and varied data types, including electronic health records (EHRs), insurance claims, 

and social determinants of health (SDOH) indicators (Holcomb et al., 2022; Pioch et al., 2023). 

Income, education, housing. Datasets that exhibit characteristics of big data, such as large 
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volume and diverse content, demand robust systems for effective integration and analysis (Belle 

et al., 2015). Big data analytics frameworks (e.g., Hadoop and Spark) can merge millions of 

records from various sources into a single platform designed for population-level analysis. Using 

advanced machine learning techniques with big data brings up the problem of understanding how 

models work. 

High-performing segmentation models utilize sophisticated machine learning and artificial 

intelligence algorithms, which function as "black boxes," preventing humans from understanding 

their internal processes (Ribeiro et al., 2016; Breiman, 2001). Although models like ensemble 

methods and deep learning algorithms can uncover hidden patterns to predict better healthcare 

events, such as hospitalizations or disease onset, their opaque operations create significant 

challenges in medical settings (Chen & Guestrin, 2016; Rajkomar et al., 2019). The basis of 

model-driven segmentations requires verification from clinicians and decision-makers who must 

trust these models when they are used for care decisions. Models lacking interpretability generate 

ethical concerns and user distrust because they may unintentionally exhibit data-driven biases 

(Obermeyer et al., 2019; Kaur & Singh, 2020). Regulatory and ethical standards now demand 

that individuals receive explanations for automated decisions that impact them (Binns et al., 

2018). Healthcare providers need to comprehend the reasoning behind an AI system's 

identification of patients who require intensive intervention as high-risk for complications by 

examining which factors prompted this classification. Healthcare providers need to understand 

the exact lab results or diagnoses and social factors that resulted in the system's high-risk 

determination. 

Explainable Artificial Intelligence (XAI) fills this void by clarifying AI decision-making 

processes (Samek et al., 2017). SHAP and LIME methods in XAI deliver model insights by 

assigning significance scores to features that influence specific predictions or groupings 

(Lundberg & Lee, 2017; Ribeiro et al., 2016). SHAP utilizes a game-theoretic framework to 

calculate Shapley values for each feature, demonstrating their impact on the model's output for 

specific predictions. These techniques allow us to interrogate a segmentation model: We can 

determine the variables that influenced the model's assignment for any specific patient or patient 

cluster. Integrating XAI into population health segmentation ensures that advanced analytic 

results stay clinically understandable while improving segmented health data's trustworthiness 

and practical value (Naik et al., 2021). 

This study advances population health segmentation in the United States by applying 

Explainable AI in big data settings. The framework presented in Figure 1 processes diverse 

healthcare datasets about diabetes and other diseases through a scalable analytics pipeline that 

performs machine learning segmentation and employs SHAP to generate transparent insights 

(Qin et al., 2022; Lu et al., 2022). This section showcases methods and case studies illustrating 

how explainable segmentation can aid clinical decision-making processes and population health 

management objectives by identifying high-cost patient clusters for care management and 

revealing modifiable risk factors within segments. Our discussion entails technical aspects, 

including Apache Spark's MLlib distributed computing implementation, and ethical elements 

like bias detection and fairness, essential for large-scale XAI deployment (Wiens et al., 2019). 

This approach combines advanced algorithms with clinical requirements and health system 

planning objectives to enhance outcomes while maintaining transparency and equity standards in 

healthcare AI applications. 
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Methods 

Our pipeline starts by collecting data from multiple external sources. Our framework integrates 

de-identified EHR data, including diagnoses and laboratory results, with claims data covering 

utilization costs and billing codes, and SDOH data containing demographic information and 

neighborhood indices, for a large U.S. health system population (Holcomb et al., 2022). The 

sources supplied an extensive range of features, including clinical elements (such as Health 

service utilization data, including metrics such as emergency visits and hospital admissions while 

clinical factors involve conditions like diabetes, hypertension, and COPD. The data included 

emergency room visits, hospital admissions, and social and environmental context information. 

Median income of ZIP code, insurance type). Our segmentation approach included diabetes 

mellitus and cardiovascular diseases like heart failure, as well as chronic respiratory conditions 

such as asthma and COPD, because these conditions are prevalent and significantly affect 

healthcare utilization among the U.S. population (Pioch et al., 2023). 

 
Figure 1: Proposed framework integrating big-data analytics with explainable AI for population 

segmentation. 

The team used Apache Spark's MLlib library within a big data environment to handle data 

processing with scalable machine learning capabilities (Belle et al., 2015). Spark MLlib was 

selected because it distributes computational tasks across a cluster and effectively manages 
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massive datasets of millions of records. Data cleaning and feature engineering steps were 

implemented in Spark: Diagnosis and procedure codes received vectorized treatment. At the 

same time, continuous data underwent normalization, and any available text-based information, 

like free-text problem records, was processed through Spark NLP pipelines. We integrated 

different features for each patient so that multi-source data could be combined into one feature 

vector (e.g., Patient data was unified into one feature vector by adding healthcare utilization 

counts, identifying chronic condition signs, and linking community-level SDOH metrics). The 

process resulted in a high-dimensional dataset with approximately 10^3 features prepared for 

segmentation modeling. 

When performing population segmentation modeling, we utilized unsupervised and machine 

learning models. 

• Unsupervised clustering: Using clustering algorithms, we identified inherent groupings in the 

data that did not require predefined labels. The population segmentation modeling process 

incorporated a two-stage clustering technique that followed the methodology described by Pioch 

et al. (2023). The analysis began with hierarchical clustering through Ward's method to 

determine the best number of clusters before performing k-means clustering on all data points 

using features like age and healthcare utilization. The method produced distinct patient segments 

based on various patterns, including high or low healthcare utilization and the extent of multi-

morbidity burden. The analysis created two groups that showed patients with high overall care 

use compared to those with low overall care use. We also experimented with advanced clustering 

using deep learning: The advanced clustering process began with an autoencoder that reduced 

patient data to a lower-dimensional space, followed by HDBSCAN clustering to determine the 

data clusters according to the Cluster-AI MLTC project approach (Dambha-Miller et al., 2022). 

The deep clustering pipeline enabled us to use various features and identify complex phenotypic 

clusters, such as patients with diabetes, hypertension, and depression who also had specific social 

needs. 

• Supervised risk stratification: We developed classification models to determine which 

patients fit into clinically defined segments or risk categories, such as top decile cost or 

uncontrolled chronic diseases. We developed an Extreme Gradient Boosting (XGBoost) model to 

categorize patients into high-risk (yes/no) groups for hospitalization in the upcoming year, which 

allowed us to divide the population into "high-risk" and "low-risk" segments (Chen & Guestrin, 

2016). The model included features encompassing historical utilization patterns, diagnosis 

information, and social determinants. We implemented Spark's distributed Random Forest and 

logistic regression models through MLlib's algorithm implementations (Breiman, 2001). Each 

model underwent hyperparameter tuning through grid search with cross-validation inside the 

Spark environment to enhance predictive performance. 

Model performance metrics were evaluated for the supervised approaches using standard 

measures: We measured supervised model performance through accuracy, precision, recall 

(sensitivity), specificity, F1-score, and AUC of the ROC curve. Predicting diabetes outcomes 

with our models resulted in moderate accuracy levels between 70% and 82%, alongside precision 

of about 80% and recall rates between 70% and 82%, which varied according to the algorithm 

used. Internal validation of segmentation tasks employed silhouette scores and cluster stability 

indices to verify the formation of meaningful groupings. One key finding was that purely data-

driven clusters aligned with known patterns: A tiny patient segment that represented about 2% of 
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the total population consumed more than 20% of healthcare expenses being identified as high-

utilizers while the dominant patient group comprising 40% of the population consumed less than 

10% of healthcare costs and consisted mainly of healthy individuals with low usage (Slough 

CCG, 2020). 

We applied XAI methods at multiple stages of the results process to enhance explainability. 

• Global feature importance: We calculated feature importances for each clustering or 

classification model. Our analysis of tree-based models such as Random Forest and XGBoost 

began with assessing native importance metrics (e.g., gain or Gini-based importance). SHAP was 

used to create global importance rankings, which evaluate feature contributions throughout all 

predictions (Lundberg & Lee, 2017; Naik et al., 2021). The SHAP analysis identified average 

sleep duration, followed by daily energy intake (calories) and age, as the top predictors in an 

XGBoost model to forecast diabetes onset based on lifestyle factors. The analysis confirmed that 

lifestyle variables significantly influence diabetes risk in the model by matching or 

supplementing domain expectations. We created partial dependence plots and accumulated local 

effects to showcase how important features influence outcomes at the margin. 

• Local explanations (patient-level or cluster-level): We applied SHAP values to determine 

individual predictions and cluster assignments. In the SHAP algorithm, each feature's impact on 

one model segment or another is calculated for every patient. SHAP analysis reveals that a 

patient in the "high-risk cardiovascular" segment reached their classification due to advanced 

age, elevated systolic blood pressure, and heart failure history, with minor risk reductions from 

normal BMI and absence of lung disease. We aggregated such individual explanations to 

interpret clusters. Our approach involved training XGBoost models to determine cluster 

membership, similar to the technique used by Dambha-Miller et al. (2022). Following Dambha-

Miller et al.'s approach in the Cluster-AI study, we implemented SHAP on auxiliary XGBoost 

models, trained to predict cluster membership. The application produced descriptions of each 

segment that humans could understand. An unsupervised cluster we identified in our data 

consisted mainly of high-utilizing patients with multiple chronic conditions (including diabetes 

and congestive heart failure combined with COPD), numerous medications, and social 

challenges (e.g., the segment profile included living in high-poverty neighborhoods). 

• Visualization: Our team developed visual explanations through SHAP summary plots to 

display how each feature affects the population. Each dot in these plots represents an individual 

patient, while its position on the x-axis shows how much that specific feature (SHAP value) 

affects the prediction. In the diabetes prediction model's SHAP summary (Figure 2, as detailed in 

results), Sleep Time and Energy intake revealed broad distributions because patients with 

minimal sleep (blue dots on the left side) showed negative SHAP values, reducing diabetes risk 

prediction. In contrast, those sleeping longer (red dots on the right side) displayed positive SHAP 

values, leading to unexpected results that we explore further in our discussion (Lundberg & Lee, 

2017). 

SHAP force diagrams for individual cases demonstrated feature combinations resulting in 

specific patient segment assignments, which helped clinicians understand model predictions 

during review sessions. The analytic procedures followed IRB-approved protocols that allowed 

for retrospective de-identified data and waived consent while ensuring HIPAA standards for data 

protection. The model development and calculations for Explainable AI (XAI) took place on a 

secure Spark cluster using various Python libraries. PySpark, scikit-learn, SHAP) used within 
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PySpark workflows. A multidisciplinary team of data scientists, clinicians, and population health 

managers collaborated throughout the process to ensure that our segmentation schemes and 

explanation outputs met clinical relevance standards and were easily understandable. Our 

subsequent section details the outcomes of these methods, sample segmentations, and their 

transparent insights demonstrated through figures, tables, and case studies. 

Results 
Segment Identification and Characteristics: Our application of two-stage clustering to claims 

and EHR data revealed six unique patient groups within our sample of over 100,000 people, 

consistent with Pioch et al.'s  (2023) results in German claims data. The population segments 

displayed significant morbidity, utilization rates, and demographic profile differences. 

Table 1 summarizes two extreme segments as examples: 

Population 

Segment 

% of 

patients 

% of 

Total 

Costs 

Key Characteristics 

High Overall 

Care Use 
2.0% 24.0% 

Older adults with multiple chronic conditions (e.g., diabetes, 

heart failure, COPD), frequent hospitalizations and ED visits, 

and high pharmacy utilization. XAI profile: Features like 

polypharmacy, high HbA1c, and prior admissions had large 

positive SHAP contributions driving membership in this 

segment. 

Low Overall 

Care Use 
42.9% 9.9% 

These patients are predominantly younger or middle-aged 

individuals with few or well-controlled conditions and 

infrequent healthcare utilization. XAI profile: The absence of 

chronic disease flags and lower utilization history contributed 

to these patients being grouped as low risk, with SHAP values 

highlighting protective factors (e.g., normal BMI, no 

hospitalization events).. 

Table 1: Examples of population segments and their characteristics.  

A small fraction of patients represents the "High Overall Care Use" segment, which generates 

extensive costs because of high health needs. In contrast, the "Low Overall Care Use" segment 

contains the majority of healthier patients with lower expenses. By applying XAI, we could 

verify known drivers of these segments: Multiple chronic conditions and prior resource use 

emerged as leading factors for high utilizers, while the low-use group was classified by the lack 

of these risk factors, which is consistent with clinical expectations. 

XAI Enhanced Feature Insights: The use of SHAP analyses delivered an in-depth 

understanding of the unique characteristics of each segment. The unsupervised clustering 

revealed one segment that consisted almost entirely of patients diagnosed with diabetes and 

obesity. The classifier training to identify the "Metabolic Syndrome" segment revealed SHAP 

explanations, which identified Hemoglobin A1c (HbA1c) level along with body mass index 

(BMI) and anti-diabetic medication count as defining features. Patients with elevated HbA1c and 

BMI scores received strong positive SHAP values that increased their likelihood of being 

assigned to this cluster. At the same time, these traits decreased the likelihood for patients in 

different clusters. Clinical knowledge tells us that poor diabetes control and obesity often happen 
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together. However, the XAI quantification provided clear insights by allowing us to inform 

patients like "Your BMI of 35 and HbA1c of 9% put you in the high-risk metabolic 

category". Our diabetes-focused model demonstrated that individuals with low BMI and HbA1c 

measurements were less likely to receive a diabetic classification, which shows that the model 

accurately implemented established risk factors. 

The heart failure (HF) case study produced another interesting finding. Our method evaluated a 

heart failure patient subset totaling 60,000 individuals with the XGBoost model predicting their 

1-year outcomes (e.g., the model predicts each patient's 1-year outcome by distinguishing 

between preserved and reduced ejection fraction status and segments patients based on these 

results. SHAP explanations in this HF model revealed a counterintuitive pattern: The model 

showed that patients with larger BMI values received higher predicted ejection fraction scores 

and were placed in a lower-risk heart failure category. Patients with smaller BMI values received 

lower predicted ejection fraction scores. The model identified the established "obesity paradox" 

in heart failure outcomes, which shows that overweight patients with heart failure sometimes 

experience better prognoses. SHAP analysis revealed BMI as a primary feature that positively 

influences predicted EF values when high but negatively influences them at low levels. Figure 2 

illustrates this with a partial dependence-like scatter: Patients with BMI values between 35 and 

40 showed SHAP values that improved predicted EF, while patients with BMI under 20 

displayed SHAP values that decreased predicted EF. XAI's extraction process demonstrates that 

explainable segmentation techniques reveal clinically significant patterns that typically stay 

concealed within a black-box model. 
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Figure 2: SHAP summary plot of top features for a diabetes risk segmentation model. 

This plot (adapted from Qin et al. 2022) ranks features based on their significance for diabetes 

risk prediction, where each dot signifies a patient and colors denote feature values, with red 

representing high values and blue representing low values. For example, Sleep Time (average 

hours of sleep) is the top feature: Patients with short sleep durations indicated by blue dots on the 

left side have negative SHAP contributions, which lower the predicted diabetes risk. In contrast, 

those with longer sleep durations, represented by red dots on the right side, demonstrate positive 

SHAP contributions that enhance the predicted risk. The second most influential factors for 

diabetes risk are daily caloric intake and age, because higher values in these factors tend to 

elevate the risk. The model's segmentation for predicting diabetes likelihood depends on lifestyle 

because dietary factors such as carbohydrate and sugar intake and BMI are significant 

features. The model's ranking of Poverty Percent and Education Level as top 10 features 

demonstrates that it incorporated social context indicators into its analysis. Although community-

level features achieved somewhat lower importance than personal health metrics, the data 

showed communities with higher poverty levels had higher risk levels (positive SHAP impact 

shown by red points). The SHAP summary enables experts to validate that the model predictions 

match established risk indicators such as poor diet, inadequate exercise, sleep, and older age, 

while determining their quantitative effects. 

Case Study Outcomes: Segmentation results became much easier to adopt during clinical and 

management conversations when we made them explainable. Our explainable segmentation 

system identified high-risk diabetic patients for a care coordination intervention within a realistic 

hospital network population health program scenario. The model classified about 5% of diabetic 

patients as a separate "very high risk" category because of their frequent hospital 

admissions. SHAP explanations for this group demonstrated that very high HbA1c combined 

with renal impairment (high creatinine) and low medication adherence were primary risk 

factors. Care managers found this data helpful because it identified high-risk patients and the 

reasons for their risk status. The model indicates this patient belongs to the highest risk segment 
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due to their 11% HbA1c level combined with congestive heart failure and medication refill 

interruptions. This level of detail supported tailored intervention: The care team concentrated on 

enhancing medication adherence and glycemic control while addressing the identified factors for 

that patient. The collective findings from the cohort studies revealed poor glucose control and 

multiple comorbidities as shared factors that justified the program's emphasis on combined 

endocrine and cardiovascular management. The early feedback from the case study revealed 

better patient engagement because clinicians could clarify "the AI flagged you because of X, Y, 

Z factors," which established a cooperative environment for risk reduction. 

Table 2 summarizes various case studies from our research and existing literature to demonstrate 

how explainable segmentation can help decision-making. 

Study & 

Population 

(Data Source) 

Segmentation 

Method & Model 

Key Findings and Model 

Performance 

Explainability Outcome (XAI 

Insights) 

Health system 

cohort for 

preventive care 

(EHR + 

claims)  

Supervised risk 

stratification 

(PySpark; 

XGBoost & 

Random Forest 

models) 

Developed a Health Index 

(HI) to classify individuals 

into high vs. low risk; 

achieved ~99% recall 

identifying high-risk 

patients, though precision 

was lower. Big-data 

processing enabled scaling 

to millions of records. 

SHAP value analysis was used 

to compute the HI as a weighted 

sum of features, revealing which 

factors most increased risk. For 

example, high blood pressure 

and polypharmacy had large 

SHAP values for high-risk 

individuals. The transparent HI 

allowed clinicians to see why 

patients were flagged and 

balanced sensitivity vs. precision 

in outreach efforts. 

Lu et al. 

(2022) – 60k 

Heart Failure 

patients 

(Integrated 

EHR data)  

Semi-supervised 

clustering 

(XGBoost 

prediction of EF 

phenotype + t-

SNE clustering) 

Segmented HF patients by 

preserved vs. reduced 

ejection fraction and 

further by clinical profiles; 

model AUC ~0.80 for EF 

prediction. Identified 

subgroups with distinct 

risk profiles (e.g. cluster of 

obese HF with better 

prognosis). 

SHAP interpretation exposed 

feature effects such as the BMI 

paradox – higher BMI 

contributed to better EF 

predictions. It highlighted 

critical features like certain 

cardiomyopathy diagnoses and 

medications that distinguished 

HF subtypes. These explanations 

provided novel insights (e.g. 

importance of BMI, specific 

comorbidities) that guided 

clinicians in understanding 

prognosis beyond traditional risk 

scores. 

Qin et al. 

(2022) – 

Supervised 

classification 

Compared multiple ML 

models predicting 

SHAP provided global feature 

rankings: top predictors were 
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Study & 

Population 

(Data Source) 

Segmentation 

Method & Model 

Key Findings and Model 

Performance 

Explainability Outcome (XAI 

Insights) 

NHANES 

dataset for 

Type 2 

Diabetes risk 

(survey + exam 

data)  

(Stacked models: 

XGBoost, 

CatBoost, SVM, 

etc.) 

diabetes; best accuracy 

~82%, precision ~81%, 

recall ~78%. Showed 

integration of lifestyle and 

demographic features 

improves prediction. 

Sleep Time, Caloric Energy 

intake, Age, followed by 

nutrients (carbs, fats) and SDOH 

factors. This explainability 

reassured researchers that the 

model relied on meaningful 

factors (e.g. diet, rest, age) and 

allowed public health experts to 

emphasize modifiable behaviors 

(sleep, nutrition) in diabetes 

prevention programs. 

Slough CCG 

(UK) – 143k 

general 

population 

(Claims + GP 

records)  

Empirical 

clustering 

(clinical criteria 

and utilization) 

Implemented population 

segmentation to target 

interventions; reported 

18% reduction in 

unplanned hospitalizations 

and 19% drop in ED visits 

after one year (for targeted 

segments). 

Though not SHAP-based, this 

case underscores the value of 

segmentation in practice. We 

note that adding XAI could 

further enhance such outcomes 

by identifying why certain 

segments benefit from 

interventions. For instance, XAI 

might reveal that frequent ED 

users had specific unmet needs 

(transportation, mental health 

issues), informing more 

precisely tailored solutions. 

Table 2: Illustrative case studies of explainable population segmentation.  

Each example demonstrates how pairing segmentation modeling with explainability techniques 

(especially SHAP) yields actionable insights. From high-level patterns (e.g., the importance of 

lifestyle factors in diabetes) to individual drivers (e.g., a particular lab value flagging a patient as 

high-risk), XAI enhanced the transparency of otherwise complex models. These explanations 

support clinical and operational decision-making, enabling trust in the model recommendations 

and guiding effective interventions. 

Fairness and Bias Detection: We also used XAI to examine model fairness across subgroups 

during our analysis. By reviewing SHAP contributions, we checked whether sensitive attributes 

like race or socioeconomic status were unduly influencing segmentation. For example, we 

noticed that zip code (a proxy for neighborhood socioeconomic status) had a moderate impact in 

some risk models – patients from specific low-income zip codes were more likely to be classified 

into high-risk segments. While this can reflect real health disparities, we must ensure the model 

is not over-emphasizing the place of residence in a way that could stigmatize or unfairly allocate 

resources. Using SHAP dependence plots, we found that zip code effects were primarily 
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mediated by associated clinical factors (those areas also had higher rates of chronic disease, 

which the model appropriately prioritized). 

Nevertheless, the XAI process allowed us to flag potential bias: by analyzing feature importance, 

we could identify if any feature (including sensitive ones) disproportionately influenced 

predictions. In our case, we adjusted the model to be fairer by constraining the influence of zip 

code, effectively reducing its SHAP importance by introducing regularization and adding more 

direct health indicators without significantly sacrificing accuracy. This illustrates how 

explainability can contribute to ethical AI, helping ensure that segmentation models focus on 

legitimate clinical needs rather than proxies that could reinforce health inequities. 

The results demonstrate that explainable AI techniques can be successfully integrated into big 

data population health analytics. We achieved high-throughput segmentation of millions of 

records using Spark, and adding SHAP explanations transformed the raw outputs into intelligible 

knowledge. Clinical leaders who reviewed the segmented results reported far greater confidence 

in acting on the findings when provided with explanations. Rather than accepting a black-box 

risk score, they could see, for instance, that "Patients in Segment A are high-risk because they 

typically have uncontrolled diabetes and hypertension, as evidenced by these lab values". This 

transparency was crucial for adoption. In the next section, we further discuss the implications of 

these findings, the lessons learned (including limitations of XAI), and the broader context of 

deploying explainable segmentation in healthcare settings. 

 

Discussion 
Our work with explainable AI techniques for population health segmentation reveals critical 

technical, clinical, and ethical aspects for widespread adoption in health systems. The research 

shows that big data frameworks can successfully integrate with XAI through demonstrated 

technical feasibility. Apache Spark's distributed computing system enabled us to process and 

model extensive terabytes of health data effectively, which is essential to address the challenges 

of healthcare big data's 5Vs (volume, variety, velocity, etc.). The pipeline integrated seamlessly 

with SHAP computations: We used parallel computing to simultaneously calculate SHAP values 

for tens of thousands of patients. The main difficulty was SHAP's high computational demand 

when working with complicated models on extensive datasets. Our solution used TreeSHAP, 

which specializes in tree-based models, and implemented patient cluster summaries to address 

this issue. To demonstrate global patterns, we performed SHAP computations on representative 

patients instead of every individual. This points to a limitation: SHAP demonstrates strong 

capabilities but requires approximation methods or distributed algorithms for deep neural 

networks and massive datasets because it becomes slow. Emerging research on accelerating XAI 

(e.g., Accelerating XAI through sampling methods and simpler surrogate models could extend 

explainability to broader applications in future contexts. 

Explaining segmentation outcomes through explainability became crucial for clinicians to 

understand and use the results effectively. Clinicians generally work with familiar risk scores 

such as CHA₂ DS₂ -VASc for stroke or the Framingham risk score because they offer clear 

transparency. Medical professionals tend to distrust machine learning models when their 

reasoning remains concealed. We connected the gap between clinicians and machine learning 

models by clearly explaining our segmentation approach. Doctors could confirm that their 

patient segmentation depended on logical factors instead of unusual or coincidental 
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correlations. When the diabetes segmentation revealed sleep time and diet as vital predictors, it 

led to meaningful patient lifestyle intervention conversations that would not have occurred with 

an opaque model. The feature of explainability often uncovered valuable information that 

professionals could use to improve patient care. The example of the BMI paradox in heart failure 

is a case in point: Our explainable model provided quantitative confirmation of a known clinical 

phenomenon, which might help doctors deliver more detailed patient counseling (e.g., addressing 

cachexia in HF patients). Addressing cachexia in HF patients. Through SHAP analysis, sleep 

duration was identified as a diabetes risk factor, strengthening existing research tying sleep 

deprivation to metabolic diseases and enabling sleep improvement strategies in diabetes 

prevention programs. These examples highlight a broader point: XAI boosts data exploration by 

identifying patterns in intricate data that either support or contradict established medical 

knowledge. 

The explainable segmentation approach improves clinical decision-making and outcomes by 

explaining the reasons behind risk group classification. Care management teams can develop 

tailored interventions when they understand what drives risk factors for different patient 

groups. When transportation problems causing missed appointments dominate the risk factors for 

a high-risk segment, as shown by SDOH elements, the intervention should focus on providing 

social support and coordinating care. The risk within a different segment may arise from critical 

clinical markers (e.g.. Severe clinical markers such as very high blood glucose and blood 

pressure levels show that patients require intensive medical management. XAI provides clear 

distinctions between health needs so population health strategies can be customized for each 

group, which matches the segmentation purpose. The Slough CCG case and our internal pilot 

programs demonstrate that explanation-informed interventions targeting specific issues can lead 

to lower acute care utilization and better health results. Explainability thus acts as a force 

multiplier for the impact of predictive analytics: The algorithm determines target groups while 

XAI explains the most effective ways to support them. 

Our research demonstrates the necessity of explainable AI in healthcare deployment to meet 

ethical standards and regulatory requirements. Population segmentation models will guide 

healthcare resource distribution decisions by determining patient membership in care 

management programs. These critical choices require both equity and responsibility in their 

execution. Through applying XAI tools such as SHAP and LIME, researchers can identify 

potential biases by analyzing the influences of different features. Our segmentation process 

reviewed the SHAP outputs to confirm that results remained unbiased concerning sensitive 

attributes such as race, gender, and socioeconomic status. Our models incorporated SDOH 

variables to enhance predictive accuracy because social factors impact health outcomes, but we 

minimized automated bias reinforcement by meticulously analyzing those variables. Assigning 

higher risk to individuals based solely on their demographic group membership is unacceptable. 

XAI reveals these problems by making them visually detectable through features like high SHAP 

values for demographic factors, which may indicate bias. Our approach ensured that segment 

assignment was governed by clinical need, which aligns with healthcare justice 

principles. Explainability helps organizations meet new legal requirements, including the EU 

GDPR's right to explain rules for algorithmic decisions and U.S. FDA guidelines regarding AI 

transparency. The increasing adoption of algorithm-based decision-making in healthcare will 
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necessitate an explanatory layer that shifts from being best practice to mandatory for AI tool 

certification and reimbursement. 

Explainability alone cannot solve all problems. The limitations of XAI methods stem from their 

ability to produce only approximate explanations for complex models, which could lead to 

incorrect conclusions when misinterpreted. SHAP's method assumes independent features but 

produces challenging attributions when features correlate highly. Blood pressure and heart 

failure status functioned as correlated features in our segmentation model, which required careful 

interpretation of their SHAP attributions as joint cardiovascular risk indicators instead of 

separate contributions. Applying different XAI techniques can result in subtle variations in 

interpretive outcomes. SHAP analysis results were confirmed through validation with multiple 

other methods, such as LIME and feature permutation importance. We verified explanation 

robustness by cross-validating SHAP results with LIME and feature permutation importance 

techniques. Data scientists may find SHAP plots clear, but they can remain too complex for 

specific clinical stakeholders who need user-friendly explanation presentations. According to our 

analysis, we found value in summative narratives (e.g., Feature X stood as one of the three 

primary drivers for 80% of Segment A patients. End-users, including doctors and nurses, need 

AI explanation communication strategies that support their decisions through human factors 

research rather thaconfusingon. The approach fits the human-centered AI strategy, which 

requires explanations tailored to user requirements and context. 

A significant discussion concern involves the integration of explainable segmentation into 

population health management workflows. Integration with existing health IT systems remains 

essential. Our process created detailed explanation reports for individual patients, which health 

professionals could access through the electronic health record system. For example, a care 

manager clicking on a patient in the high-risk registry could see a pop-up with "Risk factors: The 

patient has uncontrolled diabetes with an A1c level at 10% and CHF while living alone, 

according to SHAP values analysis. The following essential stage involves implementing these 

insights into EHRs and care management dashboards in real-time. The technical requirement 

involves setting up the pipeline to automatically distribute fresh explanation outputs to frontline 

tools following each model execution, such as monthly risk segmentation updates. Segmentation 

models require ongoing maintenance through regular retraining and re-evaluation of their 

explanations when population characteristics and data distributions shift. We anticipate setting 

up an ongoing monitoring process: The team will modify the model when performance drifts on 

XAI reveals new patterns, such as telehealth access becoming important after the 

pandemic. Explainability is a maintenance tool that monitors the model's reasoning process and 

identifies when it becomes medically irrelevant due to environmental or data changes. 

Explainable AI systems help increase the levels of patient engagement and trust. We examined 

the implementation of simplified explanation outputs to enhance patient communication in our 

program. Patients frequently seek to understand their assigned labels and reject being classified 

as "high risk" without knowing why. By providing a plain-language explanation – e.g., you 

received a notification for additional support from our system because your diabetes 

management has been challenging, and you live by yourself, which complicates illness 

handling. Patients may welcome intervention programs when they learn about their purpose 

through clear explanations. The strategy transforms the algorithm's results from unexplained 

conclusions into chances for health-related conversations with patients, which supports shared 
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decision-making frameworks. Although we did not formally collect data on patient trust in AI 

systems, we gathered anecdotal evidence showing that patients valued clear explanations about 

the services they were offered. Subsequent research should systematically examine how patients 

perceive AI-driven outreach when it includes explanations compared to when it does not. 

The discussion reveals that improving population health segmentation through XAI extends 

beyond technical enhancements, including data integrity, clinical insights, ethical fairness, and 

user adoption benefits. Our findings are consistent with broader trends reported in the literature: 

Current surveys indicate that healthcare providers build more trust towards AI systems through 

explainable AI enhancements, model performance by detecting and rectifying computational 

mistakes. The path forward remains clear despite difficulties in accurately explaining complex 

model logic while reducing computational demands and training users to understand these 

limitations. Explainability will be fundamental in future population health tools guided by 

artificial intelligence to enhance their intelligence while ensuring safety and alignment with 

human ethics. 

 

Conclusion 
In an era of increasingly data-driven healthcare, this study demonstrates that we can achieve the 

best of both worlds: The study balances sophisticated big data machine learning prediction 

capabilities with the interpretability needed to meet clinical standards and ethical 

requirements. When health systems integrate explainable AI methods such as SHAP into their 

population health segmentation processes, they gain detailed patient population insights and 

ensure transparent operationsAccordingng to research conducted by Lundberg & Lee (2017) and 

Ribeiro et al. (2017), health data modeling has widely embraced explainable AI methods, 

including SHAP and LIME6). We demonstrated that our approach in a U.S. healthcare setting 

could classify patients into meaningful groups from diverse data sources like EHR, claims, and 

SDOH. Our method successfully categorizes patients into meaningful groups such as high-

utilizers, emerging risk, and low-risk healthy, while providing clear explanations for the reasons 

behind these groupings in terms that humans can understand. Care managers and clinicians used 

these explanation-driven insights to customize interventions for specific patient segments and 

discuss individual patient risks and needs. 

Several key contributions emerge from this work. Our technical demonstration showed how 

Apache Spark MLlib and comparable big data platforms enable scalable population 

segmentation while making model logic transparent through XAI for validation and knowledge 

extraction. Our clinical research demonstrates that decision-making improves through 

explainable segmentation by identifying specific modifiable risks in patient segments. This 

directs effective care strategies leading to better health outcomes, such as decreased 

hospitalization rates and enhanced chronic disease indicators. Our ethical framework integrates 

fairness assessment protocols to respond to healthcare demands for transparent algorithmic 

operations. Healthcare organizations can achieve quality targets such as readmission reduction 

and high-cost patient management by meeting audit mandates from regulators and payers who 

demand explanations for algorithmic recommendations. 

The study recognizes its limitations while outlining areas that require additional research. One 

limitation is generalizability: Although our examples and case studies discussed several 

conditions, they were mainly retrospective. Future prospective trials on explainable segmentation 
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methods in population health management will provide definitive proof about their effects on 

patient outcomes and cost savings. The development of clinician-friendly interfaces, plus the 

potential use of natural language generation to create narrative summaries from SHAP values, 

marks an important area for refinement in explanation delivery. Further research is warranted on 

the patient-facing side of explainability: The main challenge lies in developing an effective 

communication strategy that allows patients to understand AI-recommended interventions 

without feeling frightened or overwhelmed. Our study concentrated on SHAP, although other 

XAI techniques, such as counterfactual explanations and attention mechanisms, should also be 

examined. Exploring additional XAI techniques like counterfactual explanations and attention 

mechanisms in deep learning models alongside rule-based summaries can enhance SHAP to 

deliver a more comprehensive explanatory toolset. Counterfactual explanations can motivate 

patients to change behavior by showing them outcomes such as "If you reduced your HbA1c by 

2 points, you would avoid the highest-risk classification." 

The development of population health segmentation through explainable AI represents a 

strategic approach to achieve intelligent healthcare analytics, which delivers transparency and 

fairness. Healthcare leaders can use the complete big data spectrum from clinical and social 

fields to organize populations and distribute resources effectively while maintaining vital 

understanding needed for trustworthiness and responsibility. By illuminating the "black box," 

XAI fosters a learning health system where models and humans work in synergy: Models supply 

analytical power while human experts deliver context together with oversight and compassionate 

responses to the insights produced. This method greatly benefits Patients and communities 

because it enables more personalized and accurate healthcare interventions. The evolution of 

healthcare AI combined with explanation integration will transform the current paradigm of 

skepticism and resistance into one where human collaboration and trust in AI-assisted decisions 

will grow. This research establishes a foundational template and evidence base for a future 

healthcare system where advanced analytics improve population health outcomes while 

maintaining medical transparency and ethical standards. 
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